
OpenSSH Quick Reference
Author: Jialong He

Jialong_he@bigfoot.com
http://www.bigfoot.com/~jialong_he

What is OpenSSH and where to get it
OpenSSH is a protocol suite of network connectivity tools that replace
telnet, ftp, rsh, and rcp. It encrypts all traffic (including passwords) to
effectively eliminate eavesdropping, connection hijacking, and other
network-level attacks. OpenSSH comes with most Linux distributions.

Use command “ssh -V” to check the SSH version installed. The latest
version can be found from: www.openssh.org

Server Configuration
sshd is the OpenSSH server (daemon). It is controlled by a configuration
file sshd_config which normally resides in /etc/ssh directory. You can
specify command-line options to override their configuration file
equivalents. Here are some useful options. For the complete list of
keywords, see sshd_config (5) manual page.

Keyword Description Default

AllowGroups Allow only specified groups to
connect. May use '*' and '?'.

*

AllowUsers Allow only specified users to
connect. May use '*' and '?'.

*

DenyGroups Groups NOT allowed connecting. none

DenyUsers Users NOT allowed connecting. none

AllowTcpForwarding TCP forwarding allowed. yes

GatewayPorts Allow other computers to connect
to the forwarding port.

no

HostbasedAuthentication Allow host based authentication
(use .shosts or /etc/shosts.equiv)

no

IgnoreRhosts Ignore per user .rhosts and .shosts
in hostbased authentication.

yes

IgnoreUserKnownHosts Ignore $HOME/.ssh/known_hosts,
use only /etc/ssh/ssh_known_hosts

no

PasswordAuthentication Password authentication allowed yes

PermitEmptyPasswords Allow blank password no

PublicKeyAuthentication Public key authentication allowed yes

AuthorizedKeysFile Public key file name. Default:
$HOME/.ssh/authorized_keys

see left

ListenAddress IP address to accept connection 0.0.0.0

Port Listening port 22

LogLevel sshd verbosity level info

PermitRootLogin Allow root login yes

PrintLastLog Print last login date yes

PrintMotd Print /etc/motd file yes

Protocol SSH protocol 2, 1

StrictModes check files ownership and perm. yes

SyslogFacility Syslog facility code AUTH

TCPKeepAlive Send TCP keepalive to client yes

UseDNS lookup client DNSname yes

Compression Compress network traffic yes

X11Forwading Permit X11 forwarding no

Client Configuration
ssh (sftp, scp) are OpenSSH commands to replace telnet, ftp, rcp. The
properties of these program are controlled by (1) command line options,
(2) per user configuration file $HOME/.ssh/config and (3) system wide
configuration file /etc/ssh/ssh_config.

Usage Example:
ssh user@remotehost # connect to remote host as user
scp myfile user@remotehost:/home/user # remote copy “myfile”

Here are useful keywords in ssh_config. For the complete list of keywords,
see ssh_config (5) manual page.

Keyword Description Default

HostName Default host to connect none

User Default user name none

PreferredAuthentications Preferred authentication methods
hostbased, publickey, password

see left

HostbasedAuthentication Try hostbased authentication no

PubkeyAuthentication Try Public key authentication yes

PasswordAuthentication Try password authentication yes

LocalForward Specify TCP port forwarding in
LPORT RHOST:RPORT

none

RemoteForward Remote forward port
RPORT LHOST:LPORT

none

GatewayPorts Allow hosts other than this host to
connect to the forwarding port

no

ForwardX11 Forward X11 connection no

Compression Compress network traffic no

CompressionLevel

If use compress, compress level 6

Port Default remote port 22

Protocol SSH protocol 2, 1

StrictHostKeyChecking

Allow connect to a host which is
not in $HOME/.ssh/known_hosts
or /etc/ssh/ssh_known_hosts

ask

LogLevel Verbosity level info

NumberOfPasswordPro
mpts

Allow the number of password
tries

3

TCPKeepAlive Send TCP keepalive to other end yes

VerifyHostKeyDNS Verify the remote key using DNS no

CheckHostIP Check the host IP address in the
known_hosts file

yes

Public Key Authentication
Public key authentication is a preferred method. It is more secure than
password authentication because no password travels through the network,
but you have to do some setup before you can use public key
authentication. Public key authentication is configured for individual user.

(1) Modify SSH server’s configuration file (sshd_config) to enable public
key authentication: (PublicKeyAuthentication yes). Also modify client’s
configuration file (ssh_config) to use public key authentication
(PubkeyAuthentication yes). Normally, these are default settings.

(2) Generate a key pair for this user
 ssh-keygen –t rsa –f $HOME/.ssh/id_rsa

It will prompt you a passphrase to encrypt private key. Two files “id_rsa”
and “id_rsa.pub” will be generated.

(3) Transfer user’s public key (id_rsa.pub) to SSH server and append its
contents to:
$HOME/.ssh/authorized_keys or $HOME/.ssh/authorized_keys2.

You may also restrict from which computers allowed to use public key
authentication. For example, in authorized_key file, you put “from” before
the public key.
 from=”Goat.domain.com” AAAAB3NzaC1yc2EAAA ….

(4) Now you can log on to remote system with
 ssh my_sshserver

It will prompt you passphrase to decrypt the private key. If you did not
give a passphrase in the step 2, you will be connected with asking
password.

(5) If you do give a passphrase to protect private key, but don’t want to
type this passphrase every time, it is possible to use ssh agent command:

eval `ssh-agent`
ssh-add ~/.ssh/id_isa

This will prompt you passphrase once. As long as the current terminal is
open, you can connect to the SSH server without typing passphrase. Note,
this is only valid for the current terminal, you still need to type passphrase
in other terminal.

In order to run scripts without typing password, the easiest way is to use a
blank passphrase in step 2. Unlike password, passphrase never travels
through the network. It is used for protecting local private key.

Host-based Authentication
Hosted based authentication can be useful to run batch files or scripts on
remote computers. It is very tricky to configure host based authentication.
Even if you follow the instructions exactly, you might still get a password
prompt. In this case, double check file permissions (.shosts) and computer
names (must use FQDN). Restart computer (in order to have sshd read
configuration file).

Server Side

(1) Modify /etc/ssh/sshd_config to enable host based authentication:
 HostbasedAuthentication yes
 IgnoreRhosts no
 IgnoreUserKnownHosts no # optional
 RhostsAuthentication yes # optional, not recommended

Let SSH daemon to re-read configuration file by either reboot the
computer or send “kill –HUP /var/run/sshd.pid”. On Redhat Linux, you
can restart SSH daemon using: service sshd restart

(2) Copy client’s public key to the SSH server. Client’s public key usually
stored in /etc/ssh/ssh_host_rsa_key.pub on client computer.

If client also has OpenSSH server running, you can fetch its public key by:
ssh-keygen –t rsa client_FQDN > /etc/ssh/ssh_known_hosts2

If per user known hosts is enabled (IgnoreUserKnownHosts no), you
connect to the client’s SSH daemon from the server, the client’s host key
will be saved in: $HOME/.ssh/known_hosts

Note: You MUST use FQDN of client computer to get its public key.
Following files are used to store client’s public key on the server.

System wide:
 /etc/ssh/ssh_known_hosts
 /etc/ssh/ssh_known_hosts2

Per user:
 $HOME/.ssh/known_hosts
 $HOME/.ssh/known_hosts2

(3) Add client’s FQDN in $HOME/.shosts. Please note the permissions for
this file must be owned by the user and NOT writable by group/others.

If (RhostsAuthentication yes), you can also use /etc/hosts.equiv,
but this is NOT recommended. Besides, it has NO effect for root login.

Client Side

(1) Enable host based authentication in SSH client configuration file:
/etc/ssh/ssh_config
HostbasedAuthentication yes

(2) You should have RSA host key pair (normally in /etc/ssh)
ssh_host_rsa_key
ssh_host_rsa_key.pub

If not, generate key pair with:
ssh-keygen –t rsa –f /etc/ssh/ssh_host_rsa_key –N “”

TCP Port Forwarding
OpenSSH can forward TCP traffic through SSH connection and secure
TCP applications such as POP3, IMAP or HTTP by direct clear text TCP
traffic through SSH (tunneling). Port forwarding can also redirect some
TCP traffics through firewall.

In order to use port forwarding, you must first establish SSH connection
and the connection must stay on as long as forwarding needed. In other
words, you have to logon on to SSH server. There are two kinds of port
forwarding: local and remote forwarding

Local Forwarding

In local forwarding, application servers (e.g., mail server) are on the same
computer as the SSH server. For example, suppose we have a server named
“horse” and it has web and SSH servers running. On another computer
named “goat”, using following command forwards traffic to an arbitrarily
chose port (here 12345) on “goat” to port 80 on “horse”,

ssh –g –L 12345:horse:80 horse

If you point a web browser to http://goat:12345, it will show the contents
of http://horse. Here “-g” means that other hosts can access this forwarding
port (here 12345). Similarly, you can forward other TCP traffic (e.g., POP3
110, IMAP 143) through SSH tunnel.

Remote Forwarding

If your application server is on the same machine as SSH client (i.e., you
run SSH client on the application server), you should use remote
forwarding. For example, we have a server named “horse” and client
named “goat”. On “horse”, you run

ssh –R 12345:horst:80 goat

You can point your web browser to http://goat:12345, it will show the
content as if you accessed http://horse. This time, you can only access port
“12345” on “goat” (no Gateway port).

